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Supplemental Lecture II:

Special Relativity in Tensor Notation

c© Joel C. Corbo, 2005

This set of notes accompanied the second in a series of “fun” lectures about rel-

ativity given during the Fall 2005 Physics H7C course at UC Berkeley. It is an

introduction to the tensor formulation of special relativity and is meant for under-

graduates who have had an introduction to the basic concepts of special relativity.

1 Index Notation in Three Dimensions

Index notation is a powerful tool that greatly simplifies the math involved in dealing

with vector quantities. Before introducing the full machinery of index notation in four-

dimensional spacetime, it is worth taking the time to look at it in three dimensions

where things are more familiar.

1.1 Three-Vectors and Spatial Rotations

Before discussing index notation, we will take the time to recall what we mean when

we call a quantity a vector; this material should be familiar, but the concepts involved

will come in handy when trying to understand what we mean by a four-vector.

Given three-dimensional Euclidean space, we can define a coordinate system,

known as Cartesian coordinates, involving three mutually-perpendicular axes com-

monly referred to as the x -axis, y-axis, and z -axis. Any point P in this space can

then be represented by a set of three numbers x, y, and z, the coordinates of the point,

which are interpreted as giving the position of the point in space. The position vector

x∗ is a directed line segment, starting at the origin and ending at P. Because there

is one unique vector defined for each point in space, we can interpret this vector as

giving the position of the point, just as its coordinates do.

∗In these notes, I will denote three-vectors in boldface instead of with an arrow.
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Suppose that we rotate our coordinate system by an angle θ about the z -axis.

Our vector x will have new components x ′, y ′, and z ′ related to the old components

by

x′ = x cos θ + y sin θ

y′ = −x sin θ + y cos θ

z′ = z. (1)

However, even though the components of our vector have changed, the length L of

the vector, given by the square root of the sum of the squares of the components,

remains unchanged. That this is true should be pretty obvious, but let’s verify it

with a calculation anyway:

L2 = (x′)2 + (y′)2 + (z′)2

= (x cos θ + y sin θ)2 + (−x sin θ + y cos θ)2 + z2

= x2 cos2 θ + y2 sin2 θ + 2xy sin θ cos θ

+x2 sin2 θ + y2 cos2 θ − 2xy sin θ cos θ + z2

= x2 + y2 + z2. (2)

Thus, we see explicitly that rotations leave the length of this vector invariant†.

Technically, we have not yet talked about arbitrary three-vectors, but only about

the position three-vector. However, the generalization is straightforward: a three-

vector A is a three-component object whose components transform in the manner

of a position three-vector, that is, in the manner described by Eq. (1). Its length,

defined in the same way as that of the position three vector, is invariant under spatial

rotations. Thus, what we define as a vector is a direct consequence of the properties

of the space in which we define it, because it is those properties that determine

the transformation law given in Eq. (1). Again, this statement is totally trivial in

Euclidean space, but it is useful to keep in mind when we step out of Euclidean space.

Before heading down that road, we will make note of a convenient way to write a

vector in terms of its components. As we indicated above, Cartesian space is built up

out of three coordinate axes. Each of these axes as associated with is a unit vector ;

†You may be worried that we have only shown that vectors are invariant under rotations abut
the z-axis. However, for rotation about an arbitrary axis, we can always transform our coordinate
system such that the rotation axis becomes the z-axis.
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we will write these as ex, ey, and ez. With this notation, we can write an arbitrary

vector A as

A = Axex + Ayey + Azez. (3)

This notation makes distinct the unit vectors and the components of the vector, which

are scalars and so are not written in boldface.

In addition to this notation, we can also write a vector as a column matrix. If we all

agree in advance which coordinate system we are using (Cartesian versus spherical,

for example), then all of the information in a vector is given by its components.

Therefore, we can write

A =

 Ax

Ay

Az

 . (4)

This allows us a convenient way to write the transformation in Eq. (1) is as a matrix

equation:  A′
x

A′
y

A′
z

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1


 Ax

Ay

Az

 . (5)

We see that if we expand out the right-hand side of this equation, we reproduce the

desired transformation laws. In even nicer notation, we can write the 3x3 matrix

representing the rotation about the z -axis as Rz. Then, we can rewrite the matrix

equation as a vector equation:

x′ = Rzx. (6)

Now our transformation law contains just three objects: our original and transformed

vectors and a rotation matrix that contains all of the information about the trans-

formation. This equation also illustrates a simple but important fact about vector

equations: if there is a vector quantity on one side of an equation, there must be a

vector quantity on the other side of the equation. This will be useful to keep in mind

when we start representing vectors and matrices as objects with indices.

1.2 Index Notation

In Eq. (3), we wrote the components of the vector A as Ax, Ay, and Az. However, it

will be to our advantage to write them instead as A1, A2, and A3, where 1 stands for

x, 2 for y, and 3 for z. We can use this exact same convention to rewrite the Cartesian
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unit vectors. With this convention, Eq. (3) becomes

A = A1e1 + A2e2 + A3e3. (7)

This may seem like a trivial change, but it’s actually very powerful. To see this, let’s

further rewrite this expression as

A =
3∑

i=1

Aiei. (8)

If we expand out the right-hand side of the above equation using the usual rules for

sums, we will reproduce Eq. (3). We have simplified our notation by introducing an

index i. By introducing this index, we are denoting the ith component of A as Ai,

with the understanding that i can equal only 1, 2, or 3.

Let’s look at how this works when applied to the dot product of two vectors A

and B. Using our 1, 2, 3 notation we can write

A ·B = A1B1(e1 · e1) + A1B2(e1 · e2) + A1B3(e1 · e3)

+A2B1(e2 · e1) + A2B2(e2 · e2) + A2B3(e2 · e3)

+A3B1(e3 · e1) + A3B2(e3 · e2) + A3B3(e3 · e3). (9)

Of course, we know that writing everything on the right-hand side of that expression

is a bit silly, because a unit vector dotted with itself equals 1 and a unit vector dotted

with a different unit vector, because they are orthogonal by construction, equals 0.

However, instead of making that simplification right now, let’s instead introduce two

indices i and j :

A ·B =
3∑

i=1

3∑
j=1

AiBj(ei · ej). (10)

Once again, if we expand out the right-hand side of the above equation, we will

reproduce Eq. (9).

The summation notation is better from the point of view of saving writing, but

writing the summation symbol is still a bit annoying. Therefore, let’s drop them

entirely. Then, our expression for a vector and our expression for a dot product

become

A = Aiei, (11)

and

A ·B = AiBj(ei · ej). (12)
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This way of writing a vector expression is called the Einstein summation convention.

The rule is that every time you see a term in which the same index is repeated twice,

you sum over that index from 1 to 3, even though the summation symbol is not

explicitly written. Note that it does not matter what letter or symbol is given to the

index; all that matters is that if it is repeated twice, it should be summed over‡.

While we have greatly simplified the expression for our dot product, we have still

not made use of the fact that ei·ej equals either 0 or 1, depending on the values of i

and j. In particular, we know that if i equals j, then this expression equals 1, while

if i and j are not equal, then this expression equals zero. Given this, we can define a

new symbol to replace ei·ej, the Kronecker delta δij, such that

δij ≡ ei · ej =

{
1, i = j

0, i 6= j
. (13)

Using the Kronecker delta, we can write the dot product that we have been working

with as

A ·B = δijAiBj = AiBi, (14)

where in the last step we used the fact that δij is only nonzero when i equals j. We

see that this answer is reasonable, because if we expand out the right-hand side we

get

A ·B = AiBi = A1B1 + A2B2 + A3B3, (15)

which is, of course, the right expression for the dot product.

There is one last useful point to make about the Kronecker delta. From Eq. (14),

we see that we can write

δijBj = Bi, (16)

by dropping the Ai. Thus, we have used the Kronecker delta to change the index on

a vector component. This may seem like an abuse of notation, but it really is a valid

and correct use of the summation convention.

1.2.1 Cross Products with Index Notation

Since we have talked about dot products, we will now move on to cross products. We

can write the cross product of the vectors A and B as

A×B = AiBj(ei × ej), (17)

‡In other words, AiBi=AjBj=A�B�. The symbol used as the index is irrelevant.
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where the cross product between the unit vectors can equal either 0, 1, or -1 times

the unit vector orthogonal to both of the original ones, which we will call ek.

We will play a similar trick to that of introducing the Kronecker delta by intro-

ducing the Levi-Civita symbol, εijk. The Levi-Civita symbol can equal 1, -1, or 0

under the following conditions:

εijk =


1, ijk = {123, 231, 312}
−1, ijk = {321, 213, 132}
0, otherwise

. (18)

So, this object is nonzero only when its indices are all different, and it changes sign

when any two of its indices are interchanged. Given this, we can write the cross

product above as

A×B = εijkAiBjek. (19)

Expanding out the right-hand side, we get

A×B = (A2B3 − A3B2)e1 + (A3B1 − A1B3)e2 + (A1B2 − A2B1)e3, (20)

which is the correct expression for a cross product. We can also write only a single

component of the cross product as

A×B|k = εijkAiBj, (21)

which is sometimes useful in expressions involving a number of cross products at once.

We will see an example of this in the next section.

It is often useful to write the product of two Levi-Civita symbols. This can be

written as the product of Kronecker deltas:

εijkεilm = δjlδkm − δjmδkl. (22)

It is left as an exercise to the reader to show that this is true.

1.2.2 Vector Calculus with Index Notation

Suppose that we wanted to take the derivative of a vector, that is, the divergence or

the curl. We can define the symbol ∂i to help us. Let’s take the divergence as an

example:

∇ ·A =
∂A1

∂x1

+
∂A2

∂x2

+
∂A3

∂x3

=
∂Ai

∂xi

≡ ∂iAi. (23)
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Here, we have defined a new object, ∂i, which conveniently acts like a vector whose

components are partial derivatives, but which is not an actual vector. We can use it

to find any combination of divergences and curls we want simply by treating it as we

would any other vector in a dot or cross product. For example, we would write the

curl of a vector as

∇×A = εijk∂iAjek. (24)

All of this notation may seem more trouble than it’s worth, but it’s actually much

easier to use than regular vector calculus once you get used to it. To illustrate this

point, let’s simplify a particularly nasty quantity, ∇×∇×A:

∇×∇×A = εijk∂i(∇×A|j)ek

= εijk∂iεlmj∂lAmek

= εijkεlmj∂i∂lAmek

= −εjikεlmj∂i∂lAmek

= εjikεjml∂i∂lAmek

= (δimδkl − δilδkm)∂i∂lAmek

= δimδkl∂i∂lAmek − δilδkm∂i∂lAmek

= ∂i∂lAiel − ∂i∂iAmem

= ∂l∂iAiel − ∂i∂iAmem

= ∇(∇ ·A)−∇2A. (25)

This may seem like a lot of steps, but we have been very careful to write out each and

every step in detail to help convey how a calculation like this is supposed to proceed§.

If you’ve ever calculated this out the long way, you can appreciate how much more

simply we arrived at this answer using index notation.

1.3 Index Notation and Matrices

There is a very strong connection between index notation and matrices. Above, we

noted that a standard representation of a vector is as a column matrix, and a standard

§For example, note that we pick up a minus sign every time we interchange two indices on a
Levi-Civita symbol. Note also that we are always careful to never interchange derivatives with
anything that is not a constant. The reason for this is that derivatives always act to their right, so
if we interchange the order of derivatives with other symbols in the equation, we are changing what
the derivatives are acting on. It is OK, however, to interchange derivatives with each other, because
derivatives commute.
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representation of a vector operation, like a rotation, is as a square matrix.

Objects with indices can always be interpreted as matrices. As we have seen, an

object with one index is associated with the components of a vector. In a small, but

standard, abuse of notation, we can write

Ai =

 A1

A2

A3

 . (26)

In other words, we say that Ai represents the entire vector A; it only represents a

particular component of that vector when i is set equal to 1, 2, or 3. Thus we see that

the index acts as a placeholder; it picks out particular entries in the column matrix

that represents our vector.

If a vector is represented by a single-index object, how is a square matrix, like

the rotation matrix, represented? A 3x3 matrix has nine entries, each of which is

specified by its row and column. The natural way to represent it is as a two-index

object; the first index gives the row and the second index gives the column of a given

entry:

Mij =

 M11 M12 M13

M21 M22 M23

M31 M32 M33

 . (27)

Recall that we have already come across an object with two indices: the Kronecker

delta! Given this discussion, we should be able to write it as a 3x3 matrix. Here it is:

δij =

 1 0 0

0 1 0

0 0 1

 . (28)

It’s the identity matrix!

Let’s stop briefly to look at a practical example of the equivalence of indexed

objects and matrices. Suppose we wanted to calculate the work done on an object by

a force. Newtonian mechanics tells us that

W = F · d = F1d1 + F2d2 + F3d3. (29)

We can rewrite this equation using index notation as

W = δijFidj = F1d1 + F2d2 + F3d3. (30)
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We can also rewrite this in matrix form as

W =
(

F1 F2 F3

)  1 0 0

0 1 0

0 0 1


 d1

d2

d3

 = F1d1 + F2d2 + F3d3. (31)

We see that no matter which representation we choose, we always get the same result¶.

We now have all of the conceptual pieces of this new index notation in place. An

object with one index is a vector, which is a set of three numbers that transforms in

a particular way under rotations. An object with two indices is a matrix, which is a

set of nine numbers that describes how a vector transforms under a particular trans-

formation such as a rotation or translation. Though we haven’t explicitly mentioned

it, an object with no indices is just a scalar, a quantity that does not transform at

all under a rotation or any other vector transformation. In this context all of these

objects, and also those with more than two indices, are given a new name: they are

called tensors.

Tensors are distinguished by their rank, which is just the number of indices they

have. Hence, a vector is a first-rank tensor, a matrix is a second-rank tensor, an

object with three indices (like the Levi-Civita symbol) is a third-rank tensor, and so

on. Because both sides of an equation must be the same type of quantity (that is,

we can only equate scalers with scalers, vector with vectors, and so on), the terms on

both sides of an equation must have the same set of unsummed, or free, indices.

We now turn to the task of extending this framework from three-dimensional

Euclidean space to four-dimensional Minkowski spacetime.

2 Four-vectors and the Spacetime Interval

Special relativity relates space and time through the Lorentz transformations, which

tell us how to transform the spacetime coordinates of an event from one inertial frame

to another. For a frame S ′ moving with a speed v in the x direction relative to a

¶Of course, we picked a somewhat trivial example in that the Kronecker delta is the identity
matrix. However, when the matrix in question is more complicated, the mathematical power of this
notation becomes more apparent.
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frame S, the Lorentz transformations take the form

ct′ = γ(ct− βx) (32a)

x′ = γ(x− βct) (32b)

y′ = y (32c)

z′ = z, (32d)

where we have replaced the velocity of the frame by β=v
c
. In the spirit of Eq. (5), we

can rewrite this in matrix form as
ct′

x′

y′

z′

 =


γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




ct

x

y

z

 . (33)

This is very suggestive: we have an object made of four numbers which transforms

through multiplication by a matrix in a well-defined way, just like a vector. However,

is it really a vector? Above, we defined a vector as a quantity which transforms in

a particular way under rotations such that it’s length remains the same. If we are

to call this four-component object a vector, we should be able to define a length for

it that remains invariant under some transformation. Note that we already know

of a quantity that remains invariant under a Lorentz transformation: the spacetime

interval. It is given by

s2 = (ct)2 − x2 − y2 − z2. (34)

We can show that it is invariant with a bit of algebra:

(s′)2 = (ct′)2 − (x′)2 − (y′)2 − (z′)2

= (γ(ct− βx))2 − (γ(x− βct))2 − y2 − z2

= γ2((ct)2 + (βx)2 − 2βxct− x2 − (βct)2 + 2βxct)

−y2 − z2

= γ2(1− β2)((ct)2 − x2)− y2 − z2

= (ct)2 − x2 − y2 − z2

= s2. (35)
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Thinking about this quantity as a length, we will define a new object, called the

position four-vector, by

xµ =


x0

x1

x2

x3

 ≡


ct

x

y

z

 . (36)

The 0th component of the four-vector is called the timelike component, and others

are called the spacelike components. Notice that we have replaced the Latin index by

a Greek index; from now on Greek indices will denote four-vectors while Latin indices

will denote three-vectors. Note also that the index is a superscript rather than a

subscript; the importance of this will become clear soon.

The length of a three-vector is given by the dot product of the vector with itself.

In the same way, we would like to define a dot product between four-vectors such that

the dot product of the position four-vector with itself gives the spacetime interval. If

we use the definition of the dot product given in Eq. (14), we will not get the minus

signs we want. Therefore, we define a new dot product

A ·B = ηµνA
µBν , (37)

where ηµν is called the metric and is given by

ηµν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 . (38)

With this definition, we see that dotting xµ with itself will produce the desired inter-

val:

ηµνx
µxν = η00x

0x0 + η11x
1x1 + η22x

2x2 + η33x
3x3

= (ct)2 − x2 − y2 − z2. (39)

Note that we have not written down the twelve terms for which ηµν is identically zero.

Because the metric is cumbersome to work with, we can define a new quantity,

xµ, by

xµ ≡ ηµνx
ν , (40)
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so that

xµ =


x0

x1

x2

x3

 ≡


x0

−x1

−x2

−x3

 . (41)

We call xµ a contravariant four-vector and xµ a covariant four-vector. The metric

is used to raise and lower indices, to convert between covariant and contravariant

four-vectors; it can also be used to raise and lower the indices on tensors. The dot

product between any two four-vectors can now be written as

A ·B = AµB
µ = AµBµ. (42)

We can write Eq. (33) with this new notation as

xµ′
= Λµ′

νx
ν , (43)

where Λµ′
ν represents a general Lorentz transformation (note that the information

about whether a vector is being written in the primed or the unprimed frame is

carried by the indices). Eq. (33) is but one example of such a transformation because

the form of the matrix depends on the direction of relative motion of the two frames

(just as the form of a rotation matrix depends on which axis we rotate around)‖.

We can write an inverse Lorentz transformation as Λµ
ν′ ; this takes a vector from the

primed to the unprimed frame. In matrix form, Λµ
ν′ is the same as Λµ′

ν , except that

β is replaced by −β.

In analogy to our generalization from the position vector to general vectors, we can

now generalize from the position four-vector to any sort of four-vector. A four-vector

is any four-component quantity that transforms under a Lorentz transformation such

‖Notice that the spatial rotations are also Lorentz transformations. For example,

Λµ′

ν =


1 0 0 0
0 cos θ sin θ 0
0 − sin θ cos θ 0
0 0 0 1

 (44)

is a perfectly good Lorentz transformation as defined by its action on a four-vector, because it leaves
the spacetime interval unchanged. This matrix is just a rotation about the z-axis by an angle θ.
Therefore, there are really six fundamental Lorentz transformations: the three spatial rotations and
the three transformations that correspond to changing inertial frames, which are called boosts. All
more generic Lorentz transformations can be constructed by sequential applications of these six.

12



Special Relativity in Tensor Notation

that its length, defined by the dot product of Eq. (37), remains unchanged. The

position four-vector is a canonical example of a four-vector, and will help us construct

more of them.

2.1 The Lorentz Transformations as Rotations

Before moving on to constructing more four-vectors, we will take one more look at the

Lorentz transformations. Above we made an analogy between the Lorentz transfor-

mations and three-dimensional spatial rotations in order to motivate the introduction

of four-vectors. In fact, this connection is much stronger than it initially appears.

In order to see this, we first note that

γ2 − (γβ)2 = 1. (45)

Remembering our hyperbolic trig identities, we define a quantity θ such that cosh θ =

γ and sinh θ = γβ, because cosh2 θ - sinh2 θ equals 1. Dividing one by the other, we

find
γβ

γ
=

sinh θ

cosh θ
⇒ β = tanh θ. (46)

The quantity θ is called the rapidity and is just another way of writing the frame ve-

locity. It is often a convenient quantity to work with because rapidities corresponding

to parallel velocities add linearly whereas the velocities add via the messy relativistic

velocity addition law. Substituting rapidity for velocity in that law, we find:

u′ =
u + v

1 + uv
c2

⇒ tanh θu′ =
tanh θu + tanh θv

1 + tanh θu tanh θv

= tanh(θu + θv), (47)

where the equality of the hyperbolic tangents implies

θu′ = θu + θv. (48)

If we rewrite Eq. (33) in terms of the rapidity, we find

Λ ν
µ =


cosh θ − sinh θ 0 0

− sinh θ cosh θ 0 0

0 0 1 0

0 0 0 1

 . (49)

This transformation matrix looks very much like an ordinary spatial rotation matrix.

The fact that rapidities add, just like angles in a plane, is also suggestive of rotations.
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In fact, a Lorentz transformation is a rotation in spacetime that mixes x and t. The

fact that the functions that come up in the rotation matrix are hyperbolic trig func-

tions rather than the usual trig functions is a consequence of the fact that spacetime

is Minkowski, not Euclidean, in nature∗∗.

3 More Four-vectors and Invariants

Now that we have the position four-vector, let’s try to build some more four-vectors

and calculate their related invariants.

3.1 The Velocity Four-vector

The next most obvious quantity to try to construct is the velocity four-vector U µ,

which should just be the derivative of the position four-vector xµ with respect to

time. However, we quickly run into a problem: with respect to which time do we

differentiate? To make this question more specific, imagine that we are in an inertial

frame S, and we observe a particle fly by. The particle’s trajectory is given in our

coordinates by x(t), y(t), and z(t). To find its velocity in our frame, we differentiate

these functions with respect to our coordinate time t, producing ux(t), uy(t), and

uz(t); this is the standard Newtonian approach. If we use this idea to construct the

four-velocity, we get Uµ ≡ dxµ

dx0 c. Is this the correct expression for the four-velocity?

The answer is no. Recall that in order for a set of four numbers to constitute

a four-vector, they must transform under a Lorentz transformation like the compo-

nents of the position four-vector. This is not how the quantity dxµ

dx0 transforms. The

“numerator” dxµ basically is the four-position, so it transforms correctly alone. How-

ever, the “denominator” dx0 spoils the transformation properties of dxµ

dx0 because it

also transforms††. This suggests that if we want to construct a sensible four-velocity,

we need to find a time that does not transform under a Lorentz transformation.

There is another time associated with the particle with respect to which we could

differentiate: the particle’s proper time τ , which is the time that passes for the particle

∗∗For a more detailed discussion of what this means, see the first installment of these notes.
††To connect this to the more familiar world of vectors in 3D Euclidean space, let’s suppose we

have a vector A with components Ax, Ay, and Az. We can construct the derivative dA
dAx

. Is this
quantity a vector? It’s not, because it does not transform correctly under a spatial rotation. We
can see this by noting that the first “component” of this quantity, dAx

dAx
equals 1 no matter how we

rotate the coordinate system; the other two “components” have similar problems.
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as measured by a clock that moves with the particle. One very nice property of the

proper time is that it is Lorentz invariant; by definition, observers in any inertial frame

will observe the same amount of proper time passing for a given particle traversing a

particular section of its worldline. This suggests that we could define the four-velocity

as the derivative of four-position with respect to proper time.

Before we do this, let’s say a few more words about the proper time. Mathemati-

cally, proper time is given by

dτ =
dt

γu(t)
, (50)

where by γu(t) we mean

γu(t) =
1√

1− u2(t)
c2

. (51)

This is not the same as the γ related to the frame velocity v: γ is a number related to

the constant relative velocity between two Lorentz frames whereas γu(t) is a function

of coordinate time t related to the velocity u(t) of a particle as observed in that

frame. The fact that γu(t) is a function of t is the reason why Eq. (50) is an equation

involving differentials. To make a finite proper time, we integrate:

τ =

∫ t2

t1

dt

γu(t)
. (52)

Of course, if the particle travels at constant velocity, then we could define a Lorentz

frame that corresponds to that velocity, and in that situation, γ = γu(t). Also note

that for u(t) � c, γu(t) ≈ 1, which means that t ≈ τ . This means that for small

particle velocity (the Newtonian limit), coordinate and proper time are almost equal,

which is what we expect in Newtonian mechanics.

With this understanding, we can return to our original question by calculating

the derivative of the four-position with respect to τ ‡‡:

dxµ

dτ
=

dt

dτ

dxµ

dt
= γu

dxµ

dt
= γu


c

ux

uy

uz

 . (53)

‡‡To save typing, let’s drop the explicit time dependence on on γu(t) and u(t).
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Thereforez,

Uµ ≡ dxµ

dτ
⇒


U0

U1

U2

U3

 ≡ γu


c

ux

uy

uz

 . (54)

We see that the spatial components of the four-velocity, also known as the proper

velocity, are related to the Newtonian velocity by a factor of γu. This result is rea-

sonable because in the Newtonian limit, the spatial components of Uµ reduce to the

usual Newtonian notion of velocity. In other words, spatial components of Uµ are

approximately equal to the components of u for small particle velocity, which is why

the distinction between the two doesn’t come up in the day-to-day life of a human

being.

Since Uµ is a four-vector, its length must be an invariant. Squaring it, we find

UµUµ = γ2
u(c

2 − u2) = γ2
uc

2(1− β2
u) = c2, (55)

This is indeed an invariant: it is the speed of light!

Since Uµ is a four-vector, its must also transform via the Lorentz transformations:

Uµ′
= Λµ′

νU
ν . (56)

Expanding this out, we find:

γu′c = γ (γuc− βγuux) (57a)

γu′u′x = γ (γuux − βγuc) (57b)

γu′u′y = γuuy (57c)

γu′u′z = γuuz, (57d)

or, cleaning up the notation,

γu′ = γγu (1− ββux) (58a)

γu′u′x = γγu (ux − v) (58b)

γu′u′y = γuuy (58c)

γu′u′z = γuuz. (58d)

zYou might be worried that a particle traveling at the speed of light has no proper time (because
for u = c, γ goes to infinity), and that this would cause problems in defining the four-velocity in this
case. This is true; we cannot use proper time to parameterize a path in spacetime that is lightlike.
However, one can show that there is always some parameter, called an affine parameter, that can
be used to sensibly define a four-velocity even for lightlike worldlines. We will not discuss this point
further in these notes.
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If we divide the second, third, and fourth equations by the first in turn, we find

u′x =
ux − v

1− uxv
c2

(59a)

u′y =
uy

γ(1− uxv
c2

)
(59b)

u′z =
uz

γ(1− uxv
c2

)
. (59c)

These are nothing but the velocity transformation laws.

3.2 The Energy-Momentum Four-vector

In Newtonian mechanics, we construct an object’s momentum by multiplying its

velocity by its mass. Let’s construct the four-momentum pµ in a similar fashion. We

get

pµ ≡ mUµ ⇒


p0

p1

p2

p3

 ≡ mγu


c

ux

uy

uz

 . (60)

We see that the spacelike part of the relativistic momentum pi is given by

pi = γumui, (61)

which is the Newtonian three-momentum multiplied by γu. This reduces to the New-

tonian result, mu, in the low velocity limit. However, what does the timelike compo-

nent p0 reduce to? Taylor expanding it for βu � 1 produces

cp0 = γumc2 =
mc2√
1− β2

u

= mc2

(
1 +

β2
u

2
+

3β4
u

8
+ · · ·

)
= mc2 +

1

2
mu2 +O(β4

u), (62)

where we introduced an extra factor of c for convenience. We see that the first term

in this expansion is independent of velocity while the rest of the terms are velocity-

dependent. Considering only the velocity-dependent terms, we note that the first of

these is just the Newtonian result for the kinetic energy of a particle of mass m and

speed u, while the rest are corrections suppressed by factors of β2
u. Therefore, we

can interpret these terms as the relativistic generalization of the kinetic energy of a
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particle:

K = cp0 −mc2

= γumc2 −mc2

= (γu − 1)mc2. (63)

The velocity-independent term (mc2) also has the dimensions of an energy. It de-

scribes the energy a particle has simply by virtue of the fact that it has mass, the

particle’s rest energy. This is a concept unique to special relativity, with no Newtonian

counterpart.

Thus, we interpret the quantity cp0 as the total energy E of a particle, which is

a sum of the particle’s kinetic energy and mc2, its rest energy. Hence,

p0 = γumc ≡ E

c
. (64)

There is a point buried in this discussion that has the potential to be conceptually

confusing: the fact that special relativity fundamentally changes the definitions of

both energy and momentum as compared to the Newtonian definitions. Of course,

the relativistic definitions are the correct ones. However, we noted above that for

small frame velocity βu, the relativistic results reduce to the familiar Newtonian

results, so that we incur very little error in calculating with the Newtonian formulas

when figuring out the dynamics of, for example, a baseball. Keeping this in mind,

when we use the symbols E and p in these notes, we of course mean the relativistic

energy and momentum, not the Newtonian energy and momentum.

3.2.1 Invariants and Transformations

Now that we understand the components of the momentum four-vector, we can con-

clude a number of useful things about it. First of all, the momentum four-vector is

a four-vector, which means that it should transform like the position four-vector via

the Lorentz transformations. Multiplying by our standard Lorentz transformation

matrix produces

E ′

c
= γ

(
E

c
− βpx

)
(65a)

p′x = γ

(
px −

βE

c

)
(65b)

p′y = py (65c)

p′z = pz. (65d)
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We see that energy and momentum get “mixed up” in a Lorentz transformation just

like position and time. This is a very strange result, but it follows directly from the

Lorentz transformations.

We can also calculate the length of the momentum four-vector, which must be

invariant under Lorentz transformations. We find that

pµp
µ = m2UµU

µ = m2c2, (66)

which is indeed invariant. Writing pµp
µ explicitly in terms of energy and three-

momentum, we find♣ (
E

c

)2

− p2 = m2c2, (67)

or, multiplying out the c’s,

E2 − c2p2 = m2c4. (68)

This quantity is invariant under Lorentz transformations, and is just as useful as the

spacetime interval in solving problems in special relativity.

Suppose we wanted to describe a collision between two particles, A and B . Both

the total momentum of the particles and the total energy of the particles are conserved

independently in the collision; this is an experimental fact. It would be nice to

construct a quantity involving both energy and momentum that is also conserved.

Because each particle has a four-momentum associated with it, and four-vectors add

together to form new four-vectors in the same way as three-vectors add to form

new three-vectors, we can define the total four-momentum of the system before the

collision to be

Pµ ≡ pµ
total = pµ

A + pµ
B =


Etotal/c

px,total

py,total

pz,total

 . (69)

The length of this total four-momentum is

PµPµ =

(
Etotal

c

)2

− p2
total. (70)

♣Note that the “p” in this equation is the momentum three-vector. Since we are squaring it, we
only care about its magnitude, so we do not write it in boldface. However, in cases where we are
summing the momenta of several particles, as we will in the next paragraph, we must take the vector
sum of the momenta before finding the magnitude.
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Since both total momentum and total energy are conserved during a collision, this

quantity is also conserved. However, the power in writing this combination comes from

the fact that because it is the length of a four-vector, it is also invariant under Lorentz

transformations. This means that if we are analyzing a collision which is complicated

in one Lorentz frame, we can transform it into a more convenient frame, like the

center of momentum frame♦, and this quantity will have the same numerical value.

This is, of course, completely analogous to the fact that the spacetime interval has the

same value in all inertial reference frames. Because this quantity is both conserved

during the collision and invariant when transformed between different inertial frames,

it is clearly important and should be given a name: is is the total mass-energy of the

system.

3.2.2 Massless Particles

One last item to discuss before we move on is the concept of a massless particle♠.

In Newtonian mechanics, a massless particle makes no sense because it has neither

momentum nor kinetic energy and it cannot have a net force applied on it. However,

if we look at Eq. (68), we see that a particle with no mass makes sense in special

relativity. Setting m = 0, we find

E2 − p2c2 = 0 ⇒ E = pc. (71)

So, a massless particle is one whose energy and momentum are equal, up to a factor

of c. Therefore, if it is moving in the x direction, its four-momentum can be written

as

pµ =
E

c


1

1

0

0

 . (72)

♦The center of momentum frame is the frame in which the total momentum of the system under
consideration is zero.

♠These are not just theoretical constructs. Photons are massless particles, as are gluons (the
carriers of the strong nuclear force) and gravitons (the carriers of the gravitational force). For many
years it was believed that neutrinos are also massless particles, but in fact they have a tiny, but
nonzero, mass.
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Compare this to Eq. (60). For a particle moving in the x direction, we have

pµ = mcγu


1

ux/c

0

0

 . (73)

These two results should be consistent in the case where m = 0. However, we see

that if we set m = 0 in Eq. (73), we seem to get zero for all components of the four-

momentum. The way to make these results consistent is to simultaneously assert that

the velocity of the massless particle is c. By doing that, we force the γu in Eq. (73)

to go to infinity while the mass multiplying it goes to zero; they do this in such a way

that the product is finite. Also, the ux/c factor in Eq. (73) becomes 1, as it should to

be consistent with Eq. (72). Therefore, we find that massless particles must always

travel at the speed of light. This is the only way to make our concepts of energy and

momentum consistent for massless particles.

3.3 The Force Four-vector

The last concept from classical mechanics we need to talk about is that of forces.

Given our trick for constructing a four-velocity, it should be clear how to construct the

four-force K µ (also known as the Minkowski force): differentiate the four-momentum

with respect to proper time, producing

dpµ

dτ
= γu

dpµ

dt
= γu

d

dt


p0

p1

p2

p3

 = γu
d

dt


E/c

px

py

pz

 . (74)

Recall that the time derivative of the momentum of a particle is just the force F

acting on it, and the time derivative of its energy is the power P it is absorbing or

emitting. Therefore, we find that

Kµ ≡ dpµ

dτ
⇒


K0

K1

K2

K3

 ≡ γu


P/c

Fx

Fy

Fz

 . (75)

As in the case of the four-velocity and the four-momentum, we find that the com-

ponents of the four-force reduce to the familiar Newtonian expressions for force and
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power in the low velocity limit. The components of the four-force, naturally, trans-

form via the Lorentz transformations, while the Newtonian force has a relatively nasty

transformation law given by

F ′
x =

Fx − βu·F
c

1− βux

c

(76a)

F ′
y =

Fy

γ
(
1− βux

c

) (76b)

F ′
z =

Fz

γ
(
1− βux

c

) . (76c)

We will not derive this result here.

Before moving on, let’s take some time to explicitly show that the relevant time

derivatives above actually equal F and P in the low velocity limit, that is, that the

relativistic and Newtonian conceptions of force and power agree at low velocity. First,

we can calculate the time derivative of γu:

dγu

dt
=

d

dt

(
1− u2

c2

)−1/2

=

(
1− u2

c2

)−3/2
u · u̇
c2

= γ3
u

u · u̇
c2

, (77)

where the overdot on the u indicates a time derivative. Using this, let’s calculate the

time derivative of p0:

dp0

dt
=

d

dt
[mcγu] = mc

dγu

dt
= mcγ3

u

u · u̇
c2

=
γ3

u

c
u · (mu̇). (78)

Expanding the factor of γ3
u for small βu, we get

dp0

dt
=

1

c
u · (mu̇)

(
1 +

3

2
β2

u +
15

8
β4

u + · · ·
)

. (79)

Now, we know from Newtonian mechanics that m times u̇ is equal to force, and we

know that force dotted into velocity equals power. Therefore, this quantity, to lowest

order, is simply the Newtonian power (divided by c), which justifies our interpretation

of it, with all terms included, as the relativistic generalization of power (divided by

c).

We can use similar reasoning to evaluate the time derivative of the spacelike

components of pµ. To simplify our notation, let’s do all three components in one by

defining the vector p as having components p1, p2, and p3. Then, we find that

dp

dt
=

d

dt
[mγuu] = mγuu̇ + mγ̇uu. (80)
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Substituting in for γ̇u (from above) and expanding for small βu produces

dp

dt
= mu̇γu + muγ3

u

u · u̇
c2

= mu̇

(
1 +

1

2
β2

u +
3

8
β4

u + · · ·
)

+ mβu(βu · u̇)

(
1 +

3

2
β2

u +
15

8
β4

u + · · ·
)

.(81)

The lowest order term in this expansion is equal to m times u̇, which is the Newto-

nian force♥. Therefore, we are justified in identifying this entire expression with the

relativistic generalization of force.

4 Relativistic Electrodynamics

Special relativity and electrodynamics are intimately related to each other. One of the

driving forces behind Einstein’s discovery of relativity was the desire to understand

what would happen if one ran as fast as a beam of light, and since his time it has

been shown that magnetism is nothing but a relativistic consequence of electricity

in moving frames. It should be no surprise, then, that the most simple and elegant

formulation of Maxwell’s theory of electromagnetism is in terms of relativistic four-

vectors and tensors. In this section, we will turn electromagnetism into a manifestly

relativistic theory.

4.1 The Current Density Four-vector

The theory of classical electromagnetism introduces many new quantities into the

arena of physics, including electric and magnetic fields, scalar and vector potentials,

charges, currents, and many others. Our first task will be to see what relativistically

invariant quantities we can construct out of this list.

First, let’s consider charges and currents. Imagine an infinitesimally small lump

of charge Q moving by a stationary observer with velocity u. Classically, that charge

would have an associated current density given by

J = ρu, (82)

where ρ is the charge density in the infinitesimal region. Even though charge density is

an invariant quantity classically, it is not a relativistically invariant quantity because

♥Note that the lowest order term in the part of the expansion corresponding to the γ̇ is actually
proportional to β2, whereas the lowest order term in the other part of the expansion (mu̇) contains
no factors of β. Hence, only the mu̇ survives to lowest order in the entire expression.
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it is the amount of charge per unit volume, and volumes are Lorentz contracted[.

However, we can define a proper charge density ρ0 as the charge density seen in the

rest frame of the lump of charge.

With this definition, we can postulate a form for the current density four-vector

J µ in terms of the four-velocity as

Jµ ≡ ρ0U
µ ⇒


J0

J1

J2

J3

 ≡ ρ0γu


c

ux

uy

uz

 . (83)

We see that the spacelike part of the four-current J i is given by

J i ≡ γuρ0ui, (84)

which reproduces the classical result at low velocity. Therefore, we call this quantity

the relativistic current density. Similarly, we interpret the timelike component using

our usual Taylor expansion trick as

J0

c
= γuρ0 = ρ0

(
1 +

β2
u

2
+

3β4
u

8
+ · · ·

)
= ρ0 +O(β2

u). (85)

Evidently, it is the relativistic generalization of the charge density, which we will call

ρ. We find

J0 = γucρ0 = cρ. (86)

Now that we have the four-current, we can use it to find the relativistic equivalent

of the equation of continuity, which is the mathematical expression of local conser-

vation of charge. The equation of continuity tells us that an outward flux of current

from a region leads to a reduction in the charge density in that region over time, and

vice versa. In equation form, we have

∇ · J = −dρ

dt
. (87)

[Charge, however, is a relativistically invariant quantity. First of all, it is a scalar quantity, so
it should be unchanged under a Lorentz transformation. Also, it is experimentally true that, for
example, electrons are always seen to have the same charge regardless of their state of motion.
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Now let’s take the divergence of the four-current\

∂µJ
µ = ∂0J

0 + ∂iJ
i =

d(cρ)

d(ct)
+∇ · J =

dρ

dt
+∇ · J. (89)

By the equation of continuity, the right hand side of this equation is zero. Hence, we

find that

∂µJ
µ = 0, (90)

that is, the four-current is divergenceless. This statement is equivalent to Eq. (87),

but is written in the tidier notation of four-vectors.

4.2 The Potential Four-vector

The last four-vector we will construct is the potential four-vector Aµ, which is con-

structed out of the scaler potential φ and the vector potential A. These potentials

are related to the electric and magnetic fields via

E = −∇φ− ∂A

∂t
(91a)

B = ∇×A. (91b)

Motivating the definition of the four-potential requires a greater knowledge of elec-

tromagnetism than is expected of the reader of these notes, but we can at least sketch

the argument. Starting with Maxwell’s equations in differential form, it is possible to

use Eqs. (91) to replace E and B by φ and A, yielding Maxwell’s equations in terms

of the vector and scalar potentials. These equations are not very pleasant. How-

ever, because of the way the potentials are defined, we have some freedom, known as

gauge freedom, in exactly how we choose them]. In particular, we are free to set the

\Here we are using the generalization of the partial derivative vector defined in the section on
three-vector calculus. The generalization is

∂µ =


∂0

∂1

∂2

∂3

 =


∂/∂x0

∂/∂x1

∂/∂x2

∂/∂x3

 . (88)

Notice that this object is naturally lowered, which means that its components are all positive when
its index is lowered. This is the opposite convention from the one for the four-position and related
four-vectors, but it is the right choice to make our notation internally consistent.

]A simple but familiar example of this is the fact that in electrostatics, we are always free to add
a constant term to our scalar potential without changing the electric field it generates.
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divergence of A to be whatever we like. If we make the choice that

∇ ·A = − 1

c2

∂φ

∂t
, (92)

then we can write Maxwell’s equations (in SI units) as

�2φ

c
= −µ0(cρ) (93a)

�2A = −µ0J, (93b)

where �2 is called the d’Alembertian operator and is given by

�2 ≡ ∇2 − 1

c2

∂2

∂t2
= −∂µ∂

µ. (94)

This choice of divergence is called the Lorentz gauge. From the form of Eqs. (93),

we see that the two right-hand sides (up to some constants) are the components of

the four-current. We also see, from Eq. (94), that the d’Alembertian is a Lorentz

scalar (that is, it is invariant under a Lorentz transformation, much like the three-

dimensional Laplacian ∇2 is invariant under a coordinate rotation). Therefore, φ
c

and

A must be the components of some other four-vector: the four-potential Aµ defined

by

Aµ =


A0

A1

A2

A3

 ≡


φ/c

Ax

Ay

Az

 . (95)

With this result, we can rewrite Eqs. (93) as one equation in tensor notation:

∂µ∂
µAν = µ0J

ν . (96)

4.3 The Field Strength Tensor

Now that we have the four-potential, we would like to learn how to derive the electric

and magnetic fields from it. Given the proliferation of four-vectors in these notes,

it would be reasonable to assume that the components of the electric and magnetic

field also form some sort of four-vector. However, this assumption is wrong. The

components of these two fields are actually entries in a second-rank tensor F µν known

as the electromagnetic field strength tensor.
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In order to see this, let’s look more closely at Eqs. (91). Notice that any given

component of E or B involves sums of derivatives of the potentials. We can therefore

write the components of E and B in terms of the components of ∂µ and Aµ as

Ex

c
= ∂0A1 − ∂1A0 (97a)

Ey

c
= ∂0A2 − ∂2A0 (97b)

Ez

c
= ∂0A3 − ∂3A0 (97c)

Bx = ∂3A2 − ∂2A3 (97d)

By = ∂1A3 − ∂3A1 (97e)

Bz = ∂2A1 − ∂1A2. (97f)

For example, the first of these says

Ex

c
= ∂0A1 − ∂1A0 =

1

c

∂

∂t
(−Ax)−

∂

∂x

φ

c
, (98)

or, eliminating the factor of c,

Ex = −∂φ

∂t
− ∂Ax

∂x
, (99)

which reproduces one component of Eqs. (91). It is left to the reader to verify the

other five components.

The form of Eqs. (97) leads us to postulate an expression for Fµν :

Fµν = ∂µAν − ∂νAµ. (100)

We know what six of the components of Fµν are from Eqs. (97). However, a general

two-index tensor should have sixteen independent components, so there are ten com-

ponents unaccounted for. Might there be quantities other than the components of E

and B in Fµν?

To answer this question, notice that if we set µ equal to ν in Eq. (100), F µν

equals zero, leaving us with only twelve nonzero components. Also notice that Fµν

is antisymmetric, which means that Fµν = −Fνµ. This cuts the number of indepen-

dent components in half. Therefore, F µν has only six independent components, the

components of E and B.
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To finish up our discussion of the structure of Fµν , we can write it down in matrix

form:

Fµν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0

 . (101)

So, as advertised, the field tensor is nothing but the relativistic form of the electric

and magnetic fields.

There is a tensor related to the field tensor which is useful in the formulation of

Maxwell’s equations. It is called the dual tensor and is given the symbol Fµν . It is

given by

Fµν =
1

2
εµνρσFρσ, (102)

where εµνρσ is a generalization of the Levi-Civita symbol such that

εµνρσ =


1, µνρσ = 0123 and even permutations

−1, µνρσ = odd permutations

0, otherwise

(103)

For practice, let’s calculate one entry in the dual tensor, for example F10:

F10 =
1

2
ε10µνFµν

=
1

2
(ε1023F23 + ε1032F32)

=
1

2
(−(−Bx) + Bx)

= Bx. (104)

Working through the rest of the components, we find that

Fµν =


0 −Bx −By −Bz

Bx 0 Ez/c −Ey/c

By −Ez/c 0 Ex/c

Bz Ey/c −Ex/c 0

 . (105)

4.3.1 Transforming the Field Tensor

The field tensor is the first non-trivial tensor we have seen so far in these notes, so

let’s illustrate a few points about how to manipulate one. When we defined the field
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tensor, we made the choice to write it with lowered indices, but if you look back

at the definition, we could have just as well written it with upper indices as F µν .

Fortunately, we know how to convert between upper and lower indices: just multiply

by the metric! For the field tensor, we find

F µν = ηµρησνFρσ, (106)

or, in matrix notation,

F µν =


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1




0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

 .

(107)

Multiplying all this out, we find

F µν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By

Ey/c Bz 0 −Bx

Ez/c −By Bx 0

 . (108)

This is useful to remember, because it is often the case that we might need to raise

or lower all or some of the indices on a tensor in order to use it in an equation. All

it involves is multiplication by an appropriate number of copies of the metric.

Those of us who have taken H7B (or an equivalent class) will remember that elec-

tric and magnetic fields transform between different inertial frames (in other words,

observers in different frames will observe different values for the components of E

and B in the same region of spacetime). The transformations for a boost along x are

given by

E ′
x/c = Ex/c (109a)

E ′
y/c = γ(Ey/c− βBz) (109b)

E ′
z/c = γ(Ez/c + βBy) (109c)

B′
x = Bx (109d)

B′
y = γ(By + βEz/c) (109e)

B′
z = γ(Bz − βEy/c). (109f)

How are these transformation laws related to the Lorentz transformations? We saw

earlier that the way to write a Lorentz transformation on a four-vector is to multiply
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by a factor of Λµ′
ν . In order to transform the fields we simply Lorentz transform the

field tensor:

Fµ′ν′ = Λ ρ
µ′ Λ σ

ν′ Fρσ. (110)

In matrix form, the right-hand side equals
γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1




0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By

−Ey/c Bz 0 −Bx

−Ez/c −By Bx 0




γ −γβ 0 0

−γβ γ 0 0

0 0 1 0

0 0 0 1

 ,

(111)

which, when multiplied out, equals
0 Ex/c γ(Ey/c− βBz) γ(Ez/c + βBy)

−Ex/c 0 −γ(Bz − βEy/c) γ(By + βEz/c)

−γ(Ey/c− βBz) γ(Bz − βEy/c) 0 −Bx

−γ(Ez/c + βBy) −γ(By + βEz/c) Bx 0

 .

(112)

Comparing this to the list of transformations, we see that we have reproduced them

exactly. Evidently, the transformation laws for the components of E and B are a

generalization of the Lorentz transformations for four-vectors.

Incidentally, this illustrates another strength of index notation: no matter what

kind of quantity we consider, we always know how to Lorentz transform it! We simply

multiply by one factor of Λµ′
ν for each index in the object we would like to transform.

4.3.2 Electromagnetic Invariants

In our discussion of four-vectors, we spent a fair amount of time constructing invariant

quantities that we could construct out of those vectors. These quantities are impor-

tant because they have the same value in all inertial frames. We can also construct

invariant quantities out of tensors, including the field tensor.

In order to construct a Lorentz invariant out of four-vectors, we made combi-

nations of four-vectors, like xµx
µ, that contained no free indices. Remember that

xµx
µ = ηµνxµxν . Now, suppose we have some two-index tensor Tµν which we assume,

for simplicity, is either symmetric or antisymmetric (so that swapping the indices

does nothing or introduces a minus sign, respectively). We can construct an invariant

quantity T out of it:

T = ηµνTµν = T µ
µ . (113)
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In terms of matrices, what we are doing is multiplying T by the metric, and then

taking a traceX:

T = T00 − T11 − T22 − T33. (114)

There is another invariant we can construct given Tµν :

T̃ = ηµρηνσTµνTρσ = TµνT
µν . (115)

In components, we have

T̃ = T00T
00 + T01T

01 + T02T
02 + · · ·+ T33T

33. (116)

Let’s apply this to Fµν . Since the diagonal components of Fµν are all zero, F µ
µ = 0.

This is not a very interesting invariant. However, the invariant P that involves two

copies of Fµν is interesting:

P ≡ 1

2
FµνF

µν =
1

2
(F00F

00 + F01F
01 + · · ·+ F33F

33) = B2 − E2

c2
. (117)

Furthermore, we can construct an invariant Q that involves a copy of the field strength

tensor and a copy of the dual tensor:

Q ≡ −1

4
FµνFµν = −1

4
(F00F00 + F01F01 + · · ·+ F33F33) =

1

c
(E ·B). (118)

Before concluding this section, let’s look at one (out of many) interesting results

we can conclude just by the invariance of these quantities. Suppose that P = Q = 0

in some frame. This means that the magnitude of E equals the magnitude of B (up

to a factor of c) and that E and B are perpendicular. This configuration of fields

describes an electromagnetic plane wave. Since P and Q are invariant under Lorentz

transformations, if they are 0 in one frame, they will be 0 in all frames. This implies

that an electromagnetic wave in one inertial frame looks like an electromagnetic wave

in all inertial frames.

4.4 Maxwell’s Equations

We finally come to the crowning achievement of the tensor formulation of special

relativity: Maxwell’s equations in Lorentz covariant form. In SI units, they are

∂µF
µν = µ0J

ν (119a)

∂µFµν = 0. (119b)

XRemember that the trace of a square matrix is simply the sum of the diagonal components of
the matrix.
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The first one is called the inhomogeneous Maxwell equation, and the second one is

called the homogeneous Maxwell equation. These seemingly simple equations contain

all four Maxwell equations. Let’s see how.

4.4.1 The Inhomogeneous Maxwell Equation

First, we will calculate the 0th component of the inhomogeneous Maxwell equation.

We note that

∂µF
µ0 = ∂0F

00 + ∂iF
i0 = 0 +

1

c
∇ · E, (120)

and therefore

∂µF
µ0 = µ0J

0 ⇒ 1

c
∇ · E = µ0cρ. (121)

Isolating the divergence in this last expression, we findU

∇ · E =
ρ

ε0

, (122)

Which is Gauss’s Law for electricity.

Next, let’s calculate the spacelike components. Starting with the 1st component,

we note that

∂µF
µ1 = ∂0F

01 + ∂iF
i1 =

1

c
∂t

(
−Ex

c

)
+ ∂yBz + ∂z(−By)

= − 1

c2

∂Ex

∂t
+∇×B|x. (123)

The 2nd and 3rd components yield similar results. Therefore

∂µF
µi = µ0J

i ⇒ − 1

c2

∂E

∂t
+∇×B = µ0J. (124)

Solving for the curl of B, we find

∇×B = µ0J + µ0ε0
∂E

∂t
, (125)

which is the Ampère-Maxwell Law.

4.4.2 The Homogeneous Maxwell Equation

We now turn to the Homogeneous Maxwell equation. Analyzing its 0th component

produces

∂µFµ0 = ∂0F00 + ∂iF i0 = 0 +∇ ·B, (126)

UWe use the fact that µ0ε0 = 1
c2 .
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which implies that

∇ ·B = 0. (127)

This is Gauss’s Law for magnetism.

Analyzing the 1st component of the homogeneous Maxwell equation produces

∂µFµ1 = ∂0F01 + ∂iF i1 =
1

c
∂t(−Bx) + ∂y

(
−Ez

c

)
+ ∂z

(
Ey

c

)
= −1

c

∂Bx

∂t
+−1

c
∇× E|x. (128)

Combining this with the analogous results for the 2nd and 3rd components, we find

that

∂µFµi = 0 ⇒ −1

c

(
∂B

∂t
+∇× E

)
= 0. (129)

Isolating the curl of E, we produce

∇× E = −∂B

∂t
, (130)

which is Faraday’s Law.

4.4.3 The Lorentz Force Law

The theory of classical electromagnetism requires us to postulate not only Maxwell’s

equations, but also the Lorentz force law

F = q(E + u×B), (131)

which tells us how much force a charge feels when subjected to electric and magnetic

fields. In Lorentz covariant form, this law is replaced by

Kµ = qUνF
µν . (132)

Let’s verify this with a calculation.

First, we will calculate the 1st component of this equation:

K1 = qUνF
1ν ⇒ γF 1 = q(U0F

10 + UiF
1i)

= q

(
cγ

Ex

c
− γuy(−Bz)− γuzBy

)
= qγ(Ex + u×B|x). (133)
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Combining this with the 2nd and 3rd components, and dividing out the extra factor

of γ, we find that

F = q(E + u×B), (134)

as desired.

All this begs the question: what does the 0th component of the covariant form of

the Lorentz force law give us? Let’s find out:

K0 = qUνF
0ν ⇒ γ

P

c
= q(U0F

00 + UiF
0i)

= q

(
0 + γu ·

(
−E

c

))
= −q

γ

c
u · E. (135)

Therefore, we find that
dE

dt
= −qu · E. (136)

This is simply the equation describing the rate of change of a particle’s energy due

to moving through an electric field. We note that magnetic fields don’t come up in

this equation at all, which is as it should be because magnetic fields do not change

the energy of charged particles, just their trajectories.

5 Conclusion

These notes went over a large amount of material in very few pages. Hopefully, they

have given the reader a sense of the beauty and elegance of special relativity as a

theory of nature and an understanding of how intimately linked spacial relativity and

classical electromagnetism truly are.

For more information, the author of these notes recommends a number of sources.

Both chapter 12 of Introduction to Electrodynamics (third edition) by David Griffiths

and chapters 11 and 12 of Classical Electrodynamics (third edition) by J.D. Jackson

offer an in depth look at relativistic kinematics and dynamics, as well as a wealth of

information about the relativistic formulation of electromagnetism.

34


